过去10年,激光标记工业迅猛发展,目前全球的许多供应商提供激光标记系统。几乎每个行业都要求跟踪数量庞大的生产产品和元件。与传统标记技术相比,由于激光系统本质灵活、速度快、可靠性高以及使用方便,因此激光标记是很好的加工手段。虽然过去和现在采用过多种激光器类型和不同的激光波长,但是,光纤激光器的增幅尤为惊人——几乎所有标记系统生产商在其系列产品中都至少有一种光纤激光器产品。光纤激光器的技术优势众所周知且已有据可依。在此,本文将回顾一些人们知之甚少的其它背景,并分析特别情况下光纤激光器用于激光标记的优点。
市场回顾
1998年左右,低功率连续波光纤激光器用于标记集成电路的用途有限,此后推出了第一批脉冲纳秒装置,能够适用于更广泛的标记应用,它正是目前仍在发展的光纤激光器革命的真正开始。2011年,在整个市场领域,全球光纤激光器的营业收入增长48%;在标记和雕刻领域,去年二极管泵浦固体(DPSS)激光器仅增长4%,光纤激光器销售增长34%。标记用光纤激光器的使用增长率几乎取代了低功率(<30瓦)闪光灯泵浦固体激光器。在标记和雕刻领域,其它红外激光器的最后一个据点已经处于更高功率(>30瓦),以用于更深、更快的雕刻。但是,50瓦脉冲纳秒光纤激光器的发展意味着该领域目前也正被光纤激光器占领。该领域内,所有功率的光纤激光器呈现增长,2011年一家大型供应商销售了10000多台光纤激光器。
历史背景
激光器迎来50周年发明庆典活动,而光纤激光器的美国发明家Elias Snitzer逝世了,现在也许适合讨论为何光纤激光器与其它类型激光器如此不同。固体激光器和光纤激光器采用许多稀土元素中的一种,作为产生激光光束的活性介质。“稀土”这一名称是源于发现时的确认为它们极为稀少。由于目前的许多稀土储量位于中国内蒙古而存在一些供给忧虑,但是全球许多地方的确也出产这些元素的矿石。这些稀土元素补充了基本元素周期表的上两行。对于激光工业以外的许多人员来说,这15种元素不易发音,不一定能完整拼写出来,它们属于镧系元素,因为其化学性质与元素镧相似。光纤激光器中,使用最广泛的稀土活性元素是镱,是以瑞典的小村庄伊特比命名的,在靠近这个小村庄首次发现了大量这种稀土和许多其它稀土矿。镱具有复杂的电子结构,将这种元素仔细分布在激光器的核心活性纤维之内时,能够有效生成相干中子。
光纤激光器和其它自由空间固体激光器技术之间的差异被广泛误解,有时被错误陈述。在光纤激光器中,光束实际是在光纤之内产生的。在其它技术中,光束在自由空间生成,然后经光缆传输到工件。
激光标记波长多年以来,众所周知,在近红外波长时,金属反射率大幅低于CO2气体激光器在较长发射波长10.6 μm的反射率。使用更短波长的第二个优点是激光光束的发散与其波长成正比,与光束的直径成反比,请参见下面的方程式:
其中λ =光束散度,π =激光波长,ω =束腰。
因此,波长越短,聚焦点更小,可加工出更小的表面特征。尽管聚焦能力受限,但是,较长波长的远红外气体激光器仍然在标记工业内保持重要的地位,因为纸和透明薄膜聚合物等许多广泛的标记材料不会吸收足够的激光光束。这种吸收会产生肉眼可视的表面局部特征。
使用产生近红外波长的激光器(例如光纤激光器),可以标记极为广泛的金属和非金属材料。在这些情况下,通过烧蚀材料,或者在表面形成氧化层,抑或是上述两种方法的组合,以形成肉眼可见的图标。若用肉眼观察,经烧蚀方式得到的图标显得十分精确,但是在高放大倍数显微镜下检查时,人们通常可以看到小规模但是动态性强且明显的加热和汽化工艺痕迹。虽然肉眼不能分辨其中大多数特征,大多数情况下这些特征较为粗浅,也不会影响元件的功能;但是略为粗糙的边缘会造成光线分散。
采用一系列激光技术手段,例如起泡、碳化和烧蚀,可以标记许多聚合物。对于标记颜色较浅的聚合物、聚合物薄膜或半导体材料(例如硅),且当要求特征较小时,则需要更佳的吸收率——其原因不属于本文的讨论范围。在一些情况下,会采用可见光谱中较短波长的激光器。